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NEUTRAL LOADING IN THE ENDOCHR~IC MODEL OF THE THEORY OF P~STICITY* 

The properties of a simple model of the endochronic theory of plasticity 

A.B. MOSOLOV 

(ETP) for inactive deformation processes are studied. The theory uses 
"internal time" as the parameter of the deformation process, andno 
distinction is made between the loading and unloading which is essentially 
non-linear /l-4/. 

A loading and deformation processes are described in a five-dimensional stress deviator 
space E& f5/. Restricting ourselves to processes not depending explicitly on time, we can 
write the defining equations of ETP for an initially isotropic material in the form 

&= de,-+ de,,&,= E-l&,de,=al,&= F(o,e,e', QdE, (if 
dE = 1 de - wl~I,Os;x~* 

Here e, e,, e, are the total, plastic and elastic deformation vectors, respectively, (I is 
the stress vector, z is the "internal time" parameter, E is the modulus of elasticity, F is 
the 0 (5)-invariant hardending function, /4/, & is the modified measure of the deformation, 
and x is a parameter characterizing the contribution of the elastic component of the defonna- 
tion towards the variation in intrinsic time; for any =,a'= da/& where &=)deIisthe lengthof 
the arcofthedeformationtrajectory. Weassumethatthemagnitudeofthe volumetric deformation 8 
does not affect the plasticity. 

System (1) yields the following equation: 
da = Ede- EFadc (3) 

In the simplest case 7 can be regarded as a constant of the material, in which case Eq. 
(2) will take the form (a@ = i/F is the yield point) 

da=Ede-aaIde-@%ia[, a=Efa, (3) 

The above equation describes a material without hardening. For a material with linear 
isotropic hardening we must make the substitution a,,-aoo(ifk@ /l/ (in the case of trans- 
lational hardening a- a-pe,g is the hardening modulus). 

The ETP has no concept of a yield surface and there is no unloading condition; therefore 
E@.(2), (3) are assumed to hold for both the loading (active processes ade>O) and unloading 
(passive processes ode<0 /6/). 

Let us write the condition of inactivity of the process: ada<0 (the equality corresponds 
to neutral loading). Substituting de into it from (Z), we can rewrite this condition in the 
form 

a,,'+ EFa& d 0, a, = 10 1 (4) 
Let y be the angle between s and do,cr=Ia'1. Then 

a,' = 0 easy (5) 
Let us transform the expression for E'. To do this, we substitute de from (2) into the 

expression for E' (1) and square the resulting expression. After cancelling like terms, we 
obtain a quadratic equation for E', whose root is 

(the second root is rejected as extraneous). Substituting (6) into (4) we write, after 
reduction, the condition of inactivity of the process when an extra load da is added to the 
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load (r, in the form 

c0s-P < - (i - X) cp li + (1 - 2x1 @I+, cp = Fe, (7) 

the equality corresponds to the limit angle y* of neutral loading. In the special case 
of F= l/u0 (model (3)) we have 

CeaY*(Q=-(i- x,2 [ 

6 a 
1$-(1--2X)-$ 1 -'I* 

(y+ -+ arccos (- I/% 1/1-_) as (r, - uo). 
Thus even when the deformation is carried out in the "fully plastic" region eU=[rO, the 

condition &<O is insufficient for the onset of unloading (a passive process). Eq.(8f 
fEq_(7) in the general case) determines O,<Q in a sphere (in Z&f, after the cones with 
axis (r and aperture angle ~(x--~(u~)), which may be called the unloading cones since when the 
load increment dn is applied, the unloading will begin at the point A corresponding to the 
stress (r, only if do lies within the corresponding unloading cone. Therefore the boundary 
between loading and unloading (neutral loading curve) (NLC) has an angle point at A. The 
possibility of such behaviour of the NLC was pointed out in /6/. 

We shall restrict ourselves to two-dimensional deformation-loading processes within the 
framework of model (3). Let us introduce, in the two-dimensional stress space, the polar 
coordinates r = a,, #% and measure the angle @ from the initial direction of e7i (Fig.1). 

The NCL equation in these coordinates has the form 

I do 1 /df! = 0, / sin h (aA 
Using Eqs.(5) we rewrite this equation thus: 

4 = tgy, (0") 0,-f %I 

Substituting expression (8) into it and integrating, we obtain 

p=*& (arcsin(xIL) +($$--1)“)+c (9) 

The integration constant C is found from the condition B((ri)=O, oi= Ini\, 
The relation connecting t3 and oU at x= 0 is particularly simple 

@ = + e* (i/S, - l/U*) ($0) 
We see from (9i, (10) that the NLC is "wound on the origin of coordinates", (i.e. 0,-O 

as B-cow)' The dotted line in Fig.1 shows a branch of the IJLC (at x=0.9) emerging from the 
point A. Its second branch is situated symmetrically about the 0%. The origin of coordinates 
serves as the focus of the NLC. The tangent to the NLC at A is inclined to the 0, axis at 
the angle rr 9,P. 

All this shows clearly that the NLC of the form shown corresponds to a material of 
infinitely low elasticity. We can bring in a finite region of elasticity by changing #at 
defining equations somewhat. 

Fig.1 Fig.2 Fig.3 

Let us consider (instead of (3)), the following equation (h(2) is the Heaviside function, 
cr* < (TOI : 

6 
do=Ede---------- 

Q-b* i 1 
f-2 h(o,-6*)UdS (St) 

it can be confirmed that Eq.(ll) describes a material without hardening, with the limit 
of plasticity e. and of elasticity CI*_ The sphere oU= cr. plays the part of the classical 
yield surface (we have within it de= Ede). The NLC equation for the model (11) has the form 
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= v. 
4 =k * i-$& ( > (I- x)-’ db,,, “” > G+ 

u 

It is clear that ~,,-a. as fi+-, i.e. the NLC is "wound" on a circle 

plays the role of the limit‘cycle.. 

We note that no work is done indeformingalong 

From Eq.(8) it follows that ~*>n/2, therefore 

within the sphere o,= (ri, and the deformation along 

and leads to an increase in plastic deformations. 
Figure 2 shows the NLC obtained experimentally 

2), and the dot-dashes and dashes denote the curves 

(for case 1) and x= 0.91 (for case 2). 

su = (r_ which 

the NLC dA = ode = 0. 

the NLC originating in oi 

0, = 0i corresponds to an 

in /7/ (the solid line 1) 

computed from formula (9) 

lies fully 

active process 

and in /0/ (points 

for x = 0.95 

When 0, = si is constant, we obtain from (3), (6) (remembering that cosy= 0) 

de 
P 

=+ (,-$-)+‘:,d,, , 

Thus the increment [de,1 is proportional to the length of the arc of the load trajectory 

ds,=ldal in the space Es_ This was observed experimentally in /9, lo/. Fig.3 shows a graph 

depicting the dependence of ~=tg$/tg$,, where tg$= Ide,)lds, on the magnitude of the dimen- 

sionless stress 2= cfJuO for x= 0.9 (the solid line). The points show the results obtained 

experimentally /9/. 
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